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Modal Solutions of Active Dielectric Waveguides
by Approximate Methods
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Abstract — Approximate methods are used to obtain the modal properties
of stripe-contact semiconductor injection lasers using a planar three-layer
waveguide model. The central active layer has a dielectric constant that
varies smoothly along the direction parallel to the heterojunction boundaries.
The complex dielectric constant under the stripe contact is dependent on
the gain and approaches a constant value at large lateral distances. The two
methods are compared in terms of their modal propagation constants. An
application of the effective index method facilitates a physical understand-
ing of dielectric waveguide modes as well as providing an efficient calcula-
tion procedure.

I. INTRODUCTION

NALYSIS OF mode propagation in dielectric wave-

guides with a spatially varying refractive index has
been the subject of several papers [1]-[3]. Typically, the
variation of the dielectric constant with distance has been
approximated with a parabolic profile [1], [2] or a function
of the form k = — k, + k4 tanh?(x /x,) [3]. Both approxi-
mations have the disadvantage that the value of « goes to
infinity at large distances from the point x =0, which
corresponds to the axis of lateral symmetry of the struc-
ture. In the case of a semiconductor laser, this corresponds
to the region below the center of the contact stripe. Another
approximation that eliminates this disadvantage is the use
of a function of the form [4]

K =kg+ Ax /cosh®(x /x,) (1)

to describe the variation of «. This is in closer correspon-
dence with the physical situation, since k now acquires the
value kg for x > x,. Even if this particular form of vari-
ation of x does not describe the actual variation very
closely, it retains the most important features, and leads to
equations with known solutions. The disadvantage in this
case is the fact that the field solutions consist of a finite
(possibly empty) set of confined trapped modes, an infinite
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set of discrete, diverging “leaky” modes, and a continuum
of solutions that will be designated as “radiation” modes,
as opposed to an infinite set of discrete trapped modes
only, as in the parabolic and tanh?*(x/x,) profiles. Mode
analysis is a two-dimensional problem, since the refractive
index varies in both lateral (x) and transverse (y) direc-
tions. Therefore, numerical or approximate methods need
to be applied. The most popular and effective approxima-
tion method is the “effective-index” solution, whereby the
two-dimensional problem is reduced to an equivalent, one-
dimensional one [2], [4]~[8]. Numerical methods have also
been developed. For example, in [1] the parabolic variation
is used. Maxwell’s equations are solved both for the active
layer and the confining layers, and then superposition is
applied to both types of solutions to form a general expres-
sion for the field. These solutions and their derivatives are
matched at the boundaries of the active layer, yielding an
infinite system of linear homogeneous equations, whose
solutions, numerically obtained, are the expansion coeffi-
cients for the mode in terms of the eigenfunctions of the
active layer problem. Of course, direct numerical integra-
tion of the two-dimensional wave equation is possible, but
the computation times are long compared to those required
by the algorithm discussed in this paper.

For the type of variation considered here, a general field
in the active layer must be expressed as a superposition of
the few confined discrete modes plus an integral over the
continuum. Leaky modes cannot be included in the expan-
sion if the field is to decrease to zero for large distances
from the stripe.

Direct application of the numerical method used in [1]
results in a finite set of linear equations (due to the finite
number of trapped modes) coupled with an integral equa-
tion (due to integral over the continuum). For the case in
which only one trapped mode exists (the fundamental
mode), an integral equation results, which can in principle
be solved. However, these cases will be seen to correspond
to structures with net modal loss or low gains very sensitive
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to the dielectric step size. For structures that exhibit higher,
stable gain, several discrete trapped modes exist, and we
achieve reasonable convergence with the first few modes,
so that considering the continuum is not necessary. We
also apply the effective-index method and compare it with
the approximate numerical method in terms of the propa-
gation constant vy, which is calculated as a function of the
dielectric step size in the active layer An = n, — ng, where
ny and ng are the values of refractive index under the stripe
and far away from it. The results of the two methods
practically coincide for the cases in which several trapped
modes exist. They differ appreciably only for that range of
An for which only one trapped mode exists. The dis-
crepancy may be possibly due to the continuum, but this
paper does not investigate this matter further. The follow-
ing sections will consist of a description of the class of
waveguides considered, followed by a description of the
approximate numerical method, ending with the applica-
tion of the effective-index method to this problem and
conclusions.

II. DESCRIPTION OF STRUCTURES

Fig. 1 shows the structure considered in this paper. The
confining layers 4 and C are assumed identical, their
refractive indices being described by

(2)
a,, describes the power loss in these layers, and is constant

with distance. The active layer has a constant thickness d,
with a refractive index

i(x) = n?(x)—ia(x)n(x)/ko 3)
whose dependence with x is considered to be reasonably
well approximated by

k(x) =rKg+ Ak /cost? (x /x,)

e ~pl
Ky=kKkc=ny3—ioan,/k.

(4)

where

(5a)
(5b)
(5¢)

Xo 1s a parameter related to the width of the stripe. The
values of power attenuation coefficient and refractive index
inside the active region far away from the stripe are ag and
ng, respectively. The quantity g, represents power gain
under the stripe, where the refractive index is n,, and
ko=27/A.

Using (4) and (5), we can obtain expressions for the
variation of the refractive index »n and the loss a (or gain
—a) as a function of distance. Figs. 2 and 3 show n(x)
versus x /x, and a(x) versus x /x,. For An=ny—ng>0,
the mode will be index-guided, while for An <0, it will be
index-antiguided. In this latter case, it will still be confined
because of the gain distribution, but the field will be more
spread and the modal gain will be low (eventually we may
have a net power loss). If An is negative enough, the
guiding effect is lost and the modes become leaky. The

A=Ky~ kg
_ g _— 2 .
Ko = K(O) =ny+igono/ke

R
Ks=ns—lagng/kg.
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Fig. 1. Waveguide structure considered.
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Fig. 2. Refractive index of active layer versus lateral displacement for
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Fig. 3. Power gain — a for active region versus lateral displacement for
ag=50cm™}, ng =3.595, ng = 3.6 for different values of g,,.

condition An >0 results in strong confinement and high
and stable values of modal gain.
III. NUMERICAL SOLUTION
We assume an electric field of the form
E, =¥(x,y). (6)

Following [1], we apply Maxwell’s equations to the struc-
ture in Fig. 1, and obtain inside the active layer

VA, + [v2 + k2e(x)] ¥, =0 (7)
and outside the active layer
VY, + [y + ki, ] ¥, =0 (8)

where x(x) is given by (4). We require the functions ¥, and
¥, and their normal derivatives to be continuous at the
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boundaries y = 4+ d /2, and demand that ¥, and ¥, de-
crease to zero as x — =+ oo, and also that ¥, — 0 as | y| — oo.
These boundary conditions are homogeneous, so we can
apply separation of variables.

First we consider the solution inside the active layer
making

¥, (x, y) = ¥(x)9(y). ©)

Substitution in (7) results in a vertical solution of the form

8(y)= (S gy) (102)
and a differential equation
% +| kg +y2—g* + k‘%&;s}f?—:/xﬁ]lp =0

(10b)

where q is the separation constant. The substitutions
¢=tanh(x/x;) (11a)
v=(1-£)""w(¢) (11b)
by(by +1) = kfx2Ax (12a)
Br=(g*—y*—k2xg)x2 (12b)

in (10b) result in
(1= &YW — A+ DEW + a(a+20)W=0 (13)
with
A=B+3
a=by—A+1.

(14a)
(14b)

Several solutions exist for (13). When « is an integer
[=0,1,2,- - -, we have polynomial solutions, which are the
ultraspherical or Gegenbauer polynomials C}(£). Physi-
cally, they give rise to an infinite number of discrete
modes, of which some may be trapped. The radiation
modes would be described by other solutions that satisfy
(13) for arbitrary « (see [9]).

We will now examine the polynomial solutions W(§) =
CM$) in detail. For a an integer /

A=by—1+3} (152)
B,=by—1, [=0,1,2,---. (15b)

The C}(§) are defined by
CME)=1 (16a)
CME)=2A¢ (16b)
(l+ 1)Cl};1(§) = 2(l+ }\)§C1>\(§)_(l+2>\ - I)CI)\—I(é)'
(16¢)

Using (11a) and (11b) we obtain the expression for the
modes
¥i(x) = [cosh (x/x0)] ™ **CPo~*4(tanh [x/x])
(17)
where, from (12a)

by =~ +(4+kgxgan)”. (18)
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For x > x,, (17) becomes

¥, (x)=1/2exp [" (x/%0)(by — l)] -Cpomt* 1/2(1)~
‘ (19)
So to sétisfy the boundary conditions, we require
Re{b,—1}>0. (20)

For a given b, if Re{b,} > 0 there exists at least one mode
that decreases as x = + o0, for /=0 (the fundamental
mode). Modes of order / such that Re{b, —} <0 are still
solutions of (10b) but diverge as |x| — o0, and will be
designated as “leaky”. Notice that, if Re{b;} < 0, even the
fundamental mode becomes leaky. Condition (20) can be
expressed in terms of the real and imaginary parts of Ak
defining the quantities

d=A /A (21a)
@ = 2kyx, (A7) (21b)
where Ak = A’+ i A”. We obtain
2 &4 ‘
a>(21+1) 1(1+1)-@ 22)

®2(21+1)°

as the region for lateral confinement. Fig. 4 shows ® as a

function of 8 for several values of /. Fig. 5 shows the

behavior of the || for sets of parameters resulting in the

(8,®) points marked in Fig. 4. In particular, notice

the behavior of |;| when we go from “1” to “2” to “3”.
The ,(x) will diverge for > 1, , where

lax=INT [Re{b;}]. (23)
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Leaky modes (/> {_,, ) cannot be used when expressing a
general confined field as a superposition of modes. This
results in a finite discrete eigenvalue spectrum, and the
need arises for a continuum in order to have a complete
orthogonal set of functions. We will seek an approximate
solution neglecting the continuum. For the trapped modes,
the product solutions will be of the form

¥, (x)cos(q,y) (24)
and the general solution will be approximated by
]_max
Y, (x,y)= X A(x)cos(qy) (25)
1=0,2,-,

for a field even in x, where /_,, is the maximum even value
of [ for which vy, is confined. The trapped modes satisfy the
orthogonality relation

1 [~e)
x—ofiooxp,(x)xp;(x) dx= N5, . (26)
The first few normalization constants are
_ VnT(by)
°7 T(by+3) (272)
(b ‘”_)1/2 r(bo)
M= e (o, + ) 70
_ 2\/;([)0_3/2)2(170_%)1‘([)0) (270)

2 (by~2)T(by +3)

where I'(z) is the factorial function. An analytic but lengthy
expression for the N, exists but is not given here.

Solution of (8) for the confining layers proceeds as in [1].
Separation of variables is applied to (8); the lateral solu-
tion is of the form cos(xx) whereas the vertical solution is
a decreasing exponential. Superposition is then applied;
this results in an integral since no boundary conditions are
available that would result in a discrete spectrum. The
general solution will be

¥,(x, )= [ B(x)cos (xx)
exp[(x2 —v2 —k2) X (d2- p)] dx (28)

where
kg = k(2):c 4
Now, (25) and (28) and their normal derivatives have to

be matched at y =+ d /2, the boundaries of the active
layer. Matching ¢, and ¥, results in an expression for B(x)

5 ANicos( a3 ) B0 (99)

1=10,2,-

B(x)=2

where

cos{xx) dx. (29b)
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Matching the derivatives respect to y at y=d/2 and
applying the orthogonality relation (26) yields, after using
(29a)

~

4 max d
- A Ncos( l-)] ,
7TxO/=o,22:,‘.., ”/7’ 45 1,1(Y)
. d
=A.q, Sln(ql’i)\/]vp (30)
with £, 1'= 0,2, - -/, and
= l, 2 2 2\ 1/2
1(v) = f LG0T GOl 12— k2)dx (31)
IP(X)=_—_ - 9 =2m) (_l)mr(bo_*_%_m)
7 ]/]7[ m=0 r(bo—l-i“%)m'(l_zm)'
!
2 M=) (”‘—m)
. Z ] t(Xab0+2k—l’x0)
k=0 (——m—k)!k!
2
(leven) (32)
where
22 . }
(A %) = Tyt DA+ (A= 252 (39

This is a finite system of linear homogeneous equations of
the form

(T-1)A=0 (34)

where A "= (44, Ay, -+, A7 ), I is the unit matrix, and
the matrix elements of & are given by

4cos(q,d/2)|N,

911'(7’) = . d 111'(7)- (35)
TXodr sm(q,i)\/NT,
The g, satisfy, from (12a) and (12b)
by—1)°
qt=v +k0xs+(02) . (36)

Xo

The system of equations (34) has a nontrivial solution only
if det(2—1)=0. Numerical computation of the roots
yields the possible values of the propagation constant vy.

IV. NUMERICAL RESULTS

The method was applied to a structure described by the
following parameters:

n,=3.38 8o =200 cm™!
a,=50cm™!  ny=3.595
ag=50cm™'  x,=6pm.

Direct solution of (34) involves computation of the £,,. In
general, Q,, =, but 1), = I,,.

Values of the modal loss = Re{y} were computed first by
evaluating [,.(y) using the exact expression (31). This
required one computation of this integral for every value of
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v, i.e., every iteration in the solution of (34). This resulted
in unacceptably high computation times, in part because ¥,
involves repeated use of a gamma-function routine and
also because the integrand is an oscillating function of x.
In order to improve speed, instead of solving the complete
system (34) we start with a 1 X1 matrix, go on to a 2X2
matrix, etc., and observe the convergence of the result. Fig.
6 shows Re{y} versus An for 1 X1 and 2 X2 mafrices. We

- see that the result converges relatively fast, so a 2X2
matrix is sufficient for our approximation. This holds for
the case [, >2. For [ =0, we are limited to the 1X1
case. In Fig. 6, for An< ~—0.01,/,. =0. For An>
—0.01, /., increases as shown in the figure.

In spite of this, even for I, ,, = 0, the computation time is
impractically high. An increase in speed is achieved recog-
nizing that (31) can be written as

X2 ]1 /2

111'(7)2(_72_1‘5)1/2/00 —y2— K2

A ()b (x)dx. (37)
For common values of k2 and v, |x2/(—y?—k2)| <1 in
the range of values of x for which ¥,(x) and ¢, are
appreciably different from zero. This allows us to expand
the radical in (37) using the binomial theorem and retain-
ing only a finite number of terms. This results in

1+

()= (=v2 =&)L [ Gy + ————
Iy(y)=(=v*— k%) {f_m‘h‘/’l X+2(—72—k2)

a

o0 AT T
-f_ X Yrbrdx
S
8(—v2—k2)’

S (39

— o
The integrals do not depend on vy, so they need to be
computed only once for a given set of material parameters,
and not for every value of y, as (31) would require.
Furthermore, the properties of the Fourier transform
guarantee that

f_oooo‘p/‘lj/ dx=298,. (39)

Agreement with exact computation of (31) is excellent with
the first three terms in the expansion (38) and the compu-
tation time is reduced substantially, by nearly two orders
of magnitude. This allows us to perform more extensive
modeling using this method. '

Fig. 7 shows plots of the modal loss=Re{y} as a
function of An, with g,, the gain under the stripe, as a
parameter. We notice that for each value of g, An can be
decreased up to a certain value beyond which the funda-
mental mode becomes leaky, i.e., the antiguiding effect of
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the (negative) An offsets the guiding effect of the gain
distribution,

More negative values of An are required to offset higher
values of g,. For any given g, using (5), (18), and (20) with
/=0, it can be shown that the boundary value of Ar is

(40)

These values are marked with vertical lines in Fig. 7. This
relation shows that the guiding effect of the gain distri-
bution does not depend on the individual values of g; (gain
under the stripe) and — o (gain far away from the stripe),
but only on their difference g, —(— ag) = g, + ag.

An=—3x3ny(gy+ “s)z'

V. EFFECTIVE-INDEX CALCULATION

The effective-index method consists basically in reducing
a two-dimensional problem to an equivalent one-dimen-
sional one. In our case, the two-dimensional character of
the problem is given by the dependence of the dielectric
constant on x and y. As a first approximation, the varia-
tion in one direction (in our case: x) is neglected; this is
justified if this variation is much less than that in the y
direction. This-is equivalent to approximating the wave-
guide with a simple three-layer guide whose dielectric
constants do not vary with x. The solution of this problem
yields the transverse or vertical variation of the field. Next,
the original equation describing the two-dimensional equa-
tion in x can be solved for the lateral variation of the field,
and the overall solution is approximated by the product of
this lateral field and the vertical field found from the
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three-layer problem. We start with the wave equation in
two dimensions, which is obtained merging (7) and (8)

VAV +[v? + k2e(x, y) ] ¥ =0 (41)
where ‘
Kas ly|>d/2
k(x,y)= Ax yl<d/2 (42)

i
cost?(x /x,)

For the simple three-layer guide we assume k(x)=1k,
inside the active layer. We then have

d* | —q% ly|<d/2 (43a)
&y {p2¢ ly|>d/2 (43b)

with
PP+ q*=kilro—x,] (44a)
p=gqtan(qd/2). (44b)

Now, we transform (41) making ¥(x, y) = ¢/(x)¢(y), mul-
tiplying it by ¢*( ), and integrating it over y from — oo to
o0, taking into account (42) and (43) and defining the
confinement factor

d/2
[ e d
r=_—% . (45)
[ (e v
We obtain
d*y 2_ 2 2 L
CY oy — gl + kg + kT |y =0
e YT Gett T oK sest 0 cost?(x/x, )
(46)
with
Qe =Thkgxg — p* — kiry (47a)
Ksett = Tg (47b)
Ak =TAk. (47¢)

Equation (46) has the same form as (10b). It will also have
polynomial solutions similar to (17) that represent trapped
modes

¥ (x) = [cosh (x/x,)]"" boeffclboeff_/Jr%(tanh ;ii)
0

1=0,1,2,--- (48)
where by, Ak g, and kg satisfy relations identical to

(12b), (15b), and (18). For the fundamental mode, /=0,
B = by, and using (44b), we obtain

Bl
igﬁ —(p* — k3T Ax)

(49)

y?= _k(%KA_

for the propagation constant.

VI

Values of y obtained using (49) are compared with those
obtained with the numerical method in Fig. 8. Solutions
are very close for all values of An for which the mode

DISCUSSION
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exhibits a gain which is relatively high and with low
sensitivity to An. The results differ most in the range of An
for which the mode has a net loss or has a relatively low
gain with higher sensitivity to An. This is the same region
for which only one trapped mode exists, so the error in the
numerical method is the greatest because the neglected
continuum is more important.

Fig. 9 gives the required value of the peak power gain g,
under the stripe to obtain a given modal gain G, as a
function of An, using the effective-index method. Also
included is the region for which the fundamental mode
becomes leaky. Figs. 10—12 show the normalized lateral
field distributions for different values of An. The increas-
ing antiguiding effect of decreasing An is apparent. The
distance x at which the gain is zero (loss /gain boundary) is
shown in these figures with vertical dashed lines. It can be
shown to be given by

1/2
+@-@) . (50)

)?=xocosh*1(1 P
: S N

For the set of parameters considered, X=1.45 x,. This
allows us to qualitatively understand why the modes have
the loss (gain) indicated. The vertical confinement factor T’
did not vary appreciably with An; a typical value for the
case considered was I' = 0.4963. We see that lateral varia-
tions in the refractive index affect the gain much more by
altering the lateral field distribution than by affecting the
vertical variation.
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gain, —Re{y), is now 323 cm™!

The effective-index method is scen to be a fast and
relatively accurate way to obtain the field distributions for
the class of waveguides considered, for which the numerical
method we used is not practical for extensive modeling due
to its long computation time in spite of all approximations.

The remarkable agreement between the effective-index

method and experimental results found by other workers
([10]) increases our confidence in this powerful approxi-
mate method.
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