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Modal Solutions of Active Dielectric Waveguides
by Approximate Methods
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Abstract —Approximate methods are used to obtain tbe modal properties

of stripe-contact semiconductor injection lasers using a planar three-layer

wavegnide model. The centraf active layer has a dielectric constant that

varies smootbty afong the direction parallel to the heterojunction boundaries.

The complex dielectric constant under the stripe contact is dependent on

the gain and approaches a constant vahre at large lateral distances. The two

methods are compared in terms of their modaf propagation constants. An
application of the effective index method facilitates a physical understand-

ing of dielectric waveguide modes as well as providhg an efficient calcula-

tion procedure.

I. INTRODUCTION

A NALYSIS OF mode propagation in dielectric wave-

guides with a spatially varying refractive index has

been the subject of several papers [ 1]-[3]. Typically, the

variation of the dielectric constant with distance has been

approximated with a parabolic profile [1], .[2] or a function

of the fOrm K = – K. + K3 tanh2(x/xO) [3]. Both approxi-

mations have the disadvantage that the value of K goes to

infinity at large distances from the point x = O, which

corresponds to the axis of lateral symmetry of the struc-

ture. In the case of a semiconductor laser, this corresponds

to the region below the center of the contact stripe. Another

approximation that eliminates this disadvantage is the use

of a function of the form [4]

(1)K = KS + hr/cosh2(x/xO)

to describe the variation of IC.This is in closer correspon-

dence with the physical situation, since K now acquires the

Vahte KS for x >> XO. Even if this particular form of vari-

ation of K does not describe the actual variation very

closely, it retains the most important features, and leads to

equations with known solutions. The disadvantage in this

case is the fact that the field solutions consist of a finite

(possibly empty) set of confined trapped modes, an infinite
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set of discrete, diverging “leaky” modes, and a continuum

of solutions that will be designated as “radiation” modes,

as opposed to an infinite set of discrete trapped modes

only, as in the parabolic and tanh2(x/x0 ) profiles. Mode

analysis is a two-dimensional problem, since the refractive

index varies in both lateral (x) and transverse (y) direc-

tions. Therefore, numerical or approximate methods need

to be applied. The most popular and effective approxima-

tion method is the “effective-index” solution, whereby the

two-dimensional problem is reduced to an equivalent, one-

dimensional one [2], [4]–[8]. Numerical methods have also

been developed. For example, in [1] the parabolic variation

is used. Maxwell’s equations are solved both for the active

layer and the confining layers, and then superposition is

applied to both types of solutions to form a general expres-

sion for the field. These solutions and their derivatives are

matched at the boundaries of the active layer, yielding an

infinite system of linear homogeneous equations, whose

solutions, numerically obtained, are the expansion coeffi-

cients for the mode in terms of the eigenfunctions of the

active layer problem. Of course, direct numerical integra-

tion of the two-dimensional wave equation is possible, but

the computation times are long compared to those required

by the algorithm discussed in this paper.

For the type of variation considered here, a general field

in the active layer must be expressed as a superposition of

the few confined discrete modes plus an integral over the

continuum. Leaky modes cannot be included in the expan-

sion if the field is to decrease to zero for large distances

from the stripe.

Direct application of the numerical method used in [1]

results in a finite set of linear equations (due to the finite

number of trapped modes) coupled with an integral equa-

tion (due to integral over the continuum). For the case in

which only one trapped mode exists (the fundamental

mode), an integral equation results, which can in principle

be solved. However, these cases will be seen to correspond

to structures with net modal loss or low gains very sensitive
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to the dielectric step size. For structures that exhibit higher,

stable gain, several discrete trapped modes exist, and we

achieve reasonable convergence with the first few modes,

so that considering the continuum is not necessary. We

also apply the effective-index method and compare it with

the approximate numerical method in terms of the propa-

gation constant y, which is calculated as a function of the

dielectric step size in the active layer An = n ~ – n~, where

n ~ and n~ are the values of refractive index under the stripe

and far away from it. The results of the two methods

practically coincide for the cases in which several trapped

modes exist. They differ appreciably only for that range of

An for which only one trapped mode exists. The dis-

crepancy may be possibly due to the continuum, but this

paper does not investigate this matter further. The follow-

ing sections will consist of a description of the class of

waveguides considered, followed by a description of the

approximate numerical method, ending with the applica-

tion of the effective-index method to this problem and

conclusions.

II. DESCRIPTION OF STRUCTURES

Fig. 1 shows the structure considered in this paper. The

confining layers A and C are assumed identical, their

refractive indices being described by

K~ = Kcz n; – ia~n~/ko. (2)

a~ describes the power loss in these layers, and is constant

with distance. The active layer has a constant thickness d,

with a refractive index

fc(x)=n2(x) -ia(x)n(x)/ko (3)

whose dependence with x is considered to be reasonably

well approximated by

K(X) = KS + AK/cosh2(x/xO) (4)

where

AK= KO– K~ (5a)

KO= K(0) = n; + igono/ko (5b)

KS = n; — ia~n~/ko. (5C)

X. is a parameter related to the width of the stripe. The

values of power attenuation coefficient and refractive index

inside the active region far away from the stripe are as and

n ~, respectively. The quantity gO represents power gain
under the stripe, where the refractive index is n ~, and

k.= 21r/A.

Using (4) and (5), we can obtain expressions for the

variation of the refractive index n and the loss a (or gain

– a) as a function of distance. Figs. 2 and 3 show n(x)

versus x/xO and a(x) versus x/xO. For An = no – n~ >0,

the mode will be index-guided, while for An <0, it will be

index-antiguided. In this latter case, it will still be confined

because of the gain distribution, but the field will be more

spread and the modal gain will be low (eventually we may

have a net power loss). If An is negative enough, the

guiding effect is lost and the modes become leaky. The
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Fig. 1. Waveguide structure considered.
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Fig. 2. Refractive index of active layer versus lateral displacement for
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Fig. 3. Power gain – a for active region versus lateral displacement for
as = 50 cm–’ , no = 3.595, n~ = 3.6 for different values of go.

condition An >0 results in strong confinement and high

and stable values of modal gain.

III. NUMERICAL SOLUTION

We assume an electric field of the form

Ex=v(x, y). (6)

Following [1], we apply Maxwell’s equations to the struc-

ture in Fig. 1, and obtain inside the active layer

v:~b+[y2+ k: K(X)] *b=() (7)

and outside the active layer

V:*. + [y2 + k:K~]*a = O (8)

where K(X) is given by (4). We require the functions $?. and

Vb and their normal derivatives to be continuous at the
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boundaries y = ~ d/2, and demand that ~a and q~ de- @
, ,,~\ —1

crease to zero asx ~ +-co, and also that V. -0 as Iyl ~ m.
~.‘. “? 1,\ , ..- j

T“ ..... .
...

1.
These boundary conditions are homogeneous, so we can k ‘1,\ \, :- :

g 7
‘-... ‘%,,\ !., ~

apply separation of variables.
...

36 ‘-’ ....1 .%, ,,,,~,,\,;.,,, mode
order

First we consider the solution inside the active layer
2 +.. ‘,. , \..

Cl ..+ ,,

:4
14 . .>

,
\

\\\, ~.
\

making ..\ \ 4\, .<. .
i

... ., “. ‘-...
\

Wb(x, y)=+(x) c$(y).
<

...

(9)
... =.<~-... . .. .

22 ‘ ----.. . -----‘“-......... -- .-._.-,\
Substitution in (7) results in a vertical solution of the form 5 .........

Z.
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Fig. 4. Confinement curves (I2 versus A’/A”) for several mode orders.
and a differential equation

d2$

-[

AK
+ k~ri~ + Y2 – qz,+ k~

dx2 1

+=f)
cosh2 ( X/X~ )

(lOb)

where q is the separation constant. The substitutions

E= tanh(x/xO) (ha)

+=(1 -.&) B/2w(Q (llb)

bO(bo+i)=k;x:Af( (12a)

B2 = (g2 – Y2 – k;K~)x: (12b) LATERAL DISPLACEMENT X/Xo

in ( 10b) result in
Fig. 5. Field amplitude versus lateral displacement for modes of order O

and 1 for the 3 casesshown in Fig. 4. The curves for/=1 are magnified

(1-g2)W’’-(2A +l)~W+a(a+2A)W=0 (13) fivetimes.

with For x >> XO, (17) becomes

A=B+~ (14a)
l,(x) ‘1/2exp [–(~/~O)(bo– ~)]” CpO-’+’i2(l).

a= bO— A+~. (14b) (19)

Several solutions exist for (13). When a is an integer

2=0,1,2,”””, we have polynomial solutions, which are the

ultraspherical or Gegenbauer polynomials C)($). Physi-

cally, they give rise to an infinite number of discrete

modes, of which some may be trapped. The radiation

modes would be described by other solutions that satisfy

(13) for arbitrary a (see [9]).

We will now examine the polynomial solutions W(g)=

c}(t) in detail. For a an integer 1

A= bO–l+$ (15a)

B,= bO–l, 1=0,1,2, ---- (15b)

The c}($) are defined by

C;(g)=l (16a)

Cp(g) = 2Ag (16b)

(l+l)c)+,(c) =2(l+A)Ec}($)-( l+2A-l)c}_,(&).

(16c)

So to satisfy the boundary conditions, we require

Re{bO–l}>O. (20)

For a given bO, if Re{bO} >0 there exists at least one mode

that decreases as x + + CO, for 1= O (the fundamental

mode). Modes of order 1 such that Re {bO – 1} <0 are still

solutions of ( 10b) but diverge as lx I ~ cc, and will be

designated as “leaky”. Notice that, if Re{bO} <0, even the

fundamental mode becomes leaky. Condition (20) can be

expressed in terms of the real and imaginary parts of AK

defining the quantities

@ = 2koxO(A’’)”2 (21b)

where AK = A + i P. We obtain

~> (21+1 )21(1 +1)-m4
/

@2[21+l)2
(22)

. .

Using (1 la) and (1 lb) we obtain the expression for the
as the region for lateral confinement. Fig. 4 shows @ as a

modes
function of 8 for several values of 1. Fig. 5 shows the

$,(x) = [cosh(x/xo)] ‘- bOC~O- ‘+~(tanh[x/xo])
behavior of the I+11 for sets of parameters resulting in the

(?I, ~) points marked in Fig. 4. In particular, notice

(1’7) the behavior of 1~,1 when we go from ~~~-toCC2JJtoC(3M
where, from (12a) The ~[(x) will diverge for 1> 1~=, where

bO=–~+(~+ k;x;Arc)l’2. (18) 1mm = INT [Re{bO}]. (23)
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Leaky modes (1> Ire=) cannot be used when expressing a

general confined field as a superposition of modes. This

results in a finite discrete eigenvalue spectrum, and the

need arises for a continuum in order to have a complete

orthogonal set of functions. We will seek an approximate

solution neglecting the continuum. For the trapped modes,

the product solutions will be of the form

*l(X) COS(%Y) (24)

and the general solution will be approximated by

T,(x, y) = ‘: A,$,(x)cos(q/Y) (25)
[= 0,2,...,

for a field even in x, where ~~a is the maximum even value

of 1 for which $, is confined. The trapped modes satisfy the

orthogonality relation

+fm+,(x)$;(~)~x=~,~l!r.(26)
—cc

The first few normalization constants are

(27a)

(27b)
~ = 2( bo–~)1’2F r(bo)

1
(bO-l) r(bo+;)

~ = 2fi(b0-3,/’2)z( bo-~)r(bo)
(27c)2

(bo-2)r(bo+~)

where r(z) is the factorial function. An analytic but lengthy

expression for the N, exists but is not given here.

Solution of (8) for the confining layers proceeds as in [ 1].

Separation of variables is applied to (8); the lateral solu-

tion is of the form cos (xx) whereas the vertical solution is

a decreasing exponential. Superposition is then applied;

this results in an integral since no boundary conditions are

available that would result in a discrete spectrum. The

general solution will be

Ya(x,.Y) =@x)cos(xx)

.exp[(x2 – y2 – Ic~)l’2(d/2– y)] dx (28)

where

k: = k;K~.

Now, (25) and (28) and their normal derivatives have to

be matched at y = t d/2, the boundaries of the active

layer. Matching ~. and ~~ results in an expression for l?(x)

()B(x)=? ‘~ A1~COS %;i/(X) (29a)
T /=0,2, -,

where

m +,(x)
WX)=J ~—cos(Xx)dx. (29b)

Matching the derivatives respect to y at y = d/2 and

applying the orthogonality relation (26) yields, after using

(29a)

+,=:;,,, @&s(@/,/t(Y)
,..

( ‘)m=Aj,qj, sin q,, ~ (30)

with 1, If= 0,2,. .-, j~a and

~1,r(Y)= ~mi(x)i’(x)(x2 –Y2–k:)’’2dx (31)

1/2
(-l)mr(bo+; -n’z)

J(x)=J_

@ .=0
x 2(1-2 m)r(bo_ /++)w!(l–2m)!

[

h (-l) ’(;-m]!

‘ 20 (i-m-k)’k’ “’(x’b0+2k-’’x0) I

(1 even) (32)

where

‘2A- 2X0

—r(’+iw)r(’-i%’) ’33)‘(x’ A’xo)= r(x)

This is a finite system of linear homogeneous equations of

the form

(G?’- I)X=O

‘T= (Ao, A2,.where A . .,i4j~u), 1 is the

the matrix elements of Q are given by

4COS( qld/2)~

(34)

unit matrix, and

Q/l’(Y) = [ J; _L’(Y). (35)

( )/“ Nrn-xoqr sin qr ~

The q, satisfy, from (12a) and (12b)

(bO-l)’
q:=y2+k;f(~+

x;
(36)

The system of equations (34) has a nontrivial solution only

if det ( Q – 1) = O. Numerical computation of the roots

yields the possible values of the propagation constant y.

IV. NUMERICAL RESULTS

The method was applied

following parameters:

n~ = 3.38

a~ = 50 cm– i

as = 50 cm– 1

to a structure described by the

go = 200 cm-l

no z 3.595

X. = 6 pm.

Direct solution of (34) involves computation of the Q,r. In

general, Q,r * Q,![, but 1,1,= Ill.

Values of the modal loss= Re{y} were computed first by

evaluating llP (y) using the exact expression (31 ). This

required one computation of this integral for every value of
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y, i.e., every iteration in the solution of (34). This resulted

in unacceptably high computation times, in part because ~1

involves repeated use of a gamma-function routine and

also because the integrand is an oscillating function of x.

In order to improve speed, instead of solving the complete

system (34) we start with a 1 X 1 matrix, go on to a 2 X 2

matrix, etc., and observe the convergence of the result. Fig.

6 shows Re{y} versus An for 1 X 1 and 2X 2 matrices. We

see that the result converges relatively fast, so a 2 x 2

matrix is sufficient for our approximation. This holds for

the case ~~= >2. For ~~= = O, we are limited to the 1 X 1

case. In Fig. 6, for An < - –0.01, ~~= = O. For An >

– 0.01, ~~a increases as shown in the figure.

In spite of this, even for ~= = O, the computation time is

impractically high. An increase in speed is achieved recog-

nizing that (31) can be written as

J[~lr(y)=(–Y2–&2 m1+ X2
I

1/2

—m
–y2–k~

“i(x) i(x)~x. (37)

For common values of k; and y, lX2/( – Y* – k~)l <<1 in

the range of values of x for which ~l(x) and ~1 are

appreciably different from zero. This allows us to expand

the radical in (37) using the binomial theorem and retain-

ing only a finite number of terms. This results in

MY)=(-Y2–W2 {!‘w. -

_m@)rdx + *
2(–y2– k:)

1

8(–y2–k:)2

(38)

The integrals do not depend on y, so they need to be

computed only once for a given set of material parameters,

and not for every value of y, as (31) would require.

Furthermore, the properties of the Fourier transform

guarantee that

J
w__

q,+,,dx = 8[r.
—w

(39)

Agreement with exact computation of(31) is excellent with

the first three terms in the expansion (38) and the compu-

tation time is reduced substantially, by nearly two orders

of magnitude. This allows us to perform more extensive

modeling using this method.

Fig. 7 shows plots of the modal loss= Re{y} as a

function of An, with gO, the gain under the stripe, as a

parameter. We notice that for each value of go, An can be

decreased up to a certain value beyond which the funda-

mental mode becomes leaky, i.e., the antiguiding effect of

-20
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Fig. 6. Mode attenuation Re{y) and number of discrete trapped modes
versus An.
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Fig. 7. Mode attenuation Re{ y) versus An for different values of go.

the (negative) An offsets the guiding effect of the gain

distribution.

More negative values of An are required to offset higher

values of gO. For any given go, using (5), (18), and (20) with

1 = O, it can be shown that the boundary value of An is

An= –~x~no(go + a~)2. (40)

These values are marked with vertical lines in Fig. 7. This

relation shows that the guiding effect of the gain distri-

bution does not depend on the individual values of gO (gain

under the stripe) and – as (gain far away from the stripe),

but only on their difference gO – ( – as) = go + as.

V. EFFE?CTIVE-INDEX CALCULATION

The effective-index method consists basically in reducing

a two-dimensional problem to an equivalent one-dimen-

sional one. In our case, the two-dimensional character of

the problem is given by the dependence of the dielectric

constant on x and y. As a first approximation, the varia-

tion in one direction (in our case: x) is neglected; this is

justified if this variation is much less than that in the y

direction. This is equivalent to approximating the wave-

guide with a simple three-layer guide whose dielectric

constants do not vary with x. The solution of this problem

yields the transverse or vertical variation of the field. Next,
the original equation describing the two-dimensional equa-

tion in x can be solved for the lateral variation of the field,

and the overall solution is approximated by the product of

this lateral field and the vertical field found from the
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three-layer problem. We start with the wave equation in

two dimensions, which is obtained merging (7) and (8)

V~w+[y2+ k; K(X, Y)]~=0 (41)

where

(K~, Iyl > d/2

[

K(X, ~)= ~~+ AK
Iyl < d/a” (42)

cosh2(x/xo) ‘

For the simple three-layer guide we assume K(X)= KO

inside the active layer. We then have

d’~

-(

– 92$ Iyl < d/2 (43a)

dy’ = p2r#r lYI > d/2 (43b)

with

J)2+q2=k; [Ko-lCA] (44a)

p = q tan ( qd/2). (44b)

Now, we transform (41) making T(x, y) = +(x)~(y), mul-

tiplying it by o*(y), and integrating it over y from – cc to

cc, taking into account (42) and (43) and defining the

confinement factor

Jy,@(Y)+(Y)dY

‘= j~ @*(y) @(y)dy “

(45)

—m

We obtain

dz$

-1

AK~ff
+ y’ – q:ff + k%seff + M

I

+=()

dxz coshz (X/X. )

(46)

with

q& = rk:Xo – p’ – k&A (47a)

KSeff = rK~ (47b)

AK,ff = rAK. (47C)

Equation (46) has the same form as (lOb). It will also have

polynomial solutions similar to (17) that represent trapped

modes

()
+{(x) = [cosh(x/xO)] 1- ~“’’c~o,ff - /++ ~a~ Z

X.

1=0,1,2,... (48)

where bOCff, and K~cff satisfy relations identical to
(12b), (15b),A~%’ (18). For the fundamental mode, 1 = O,

B = boeff~ and using (44b), we obtain

b:eff
y’ = – k;KA –

_#2-k@K) (49)

for the propagation constant.

VI. DISCUSSION

Values of y obtained using (49) are compared with those

obtained with the numerical method in Fig. 8. Solutions

are very close for all values of An for which the mode

Fig. 8.
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Fig. 9. Peak active region gain go versus An for several values of Re{y},
Dotted area indicates region where fundamental mode becomes leaky.

exhibits a gain which is relatively high and with low

sensitivity to An. The results differ most in the range of An

for which the mode has a net loss or has a relatively low

gain with higher sensitivity to An. This is the same region

for which only one trapped mode exists, so the error in the

numerical method is the greatest because the neglected

continuum is more important.

Fig. 9 gives the required value of the peak power gain go

under the stripe to obtain a given modal gain G, as a

function of An, using the effective-index method. Also

included is the region for which the fundamental mode

becomes leaky. Figs. 10-12 show the normalized lateral

field distributions for different values of An. The increas-

ing antiguiding effect of decreasing An is apparent. The

distance x at which the gain is zero (loss/gain boundary) is

shown in these figures with vertical dashed lines. It can be

shown to be given by

‘=xocOsh-’(l+$H”20 (50)

For the set of parameters considered, %= 1.45 Xo. This

allows us to qualitatively understand why the modes have

the loss (gain) indicated. The vertical confinement factor r

did not vary appreciably with An; a typical value for the

case considered was r = 0.4963. We see that lateral varia-

tions in the refractive index affect the gain much more by

altering the lateral field distribution than by affecting the

vertical variation.
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gain, – Re{y), is now 32.3 cm-1.

The effective-index method is seen to be a fast and

relatively accurate way to obtain the field distributions for

the class of waveguides considered, for which the numerical

method we used is not practical for extensive modeling due

to its long computation time in spite of all approximations.

The remarkable agreement between the effective-index

method and experimental results found by other workers

([10]) increases our confidence in this powerful approxi-

mate method.
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